
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

62, 1, pp. 117-128, Warsaw 2024
https://doi.org/10.15632/jtam-pl/177321

HIGH ACCURACY RECOGNITION OF MUSCLE FATIGUE BASED ON

SEMG MULTIFRACTAL AND LSTM

Xia Zhang, Zhongli Gu

College of Mechatronics and Automobile Engineering, Chongqing Jiaotong University, Nanan District, Chongqing, China

corresponding author Xia Zhang, w-mail: zhangx82@cqjtu.edu.cn

A muscle fatigue identification method that integrates the multifractal of sEMG with LSTM
is proposed. The MFDMA method was introduced to analyze and extract non-linear prop-
erties of sEMG. The significance of differences between the fatigue and non-fatigue states
in terms of spectral width, Hurst index variation difference, and peak singularity index was
determined using the t-test. A LSTM networks under the combined feature set comprising
multiple fractals was built, and its recognition accuracy was 98.91%. The LSTM network
model was found to be more accurate than other classification methods in identifying muscle
fatigue under the same feature set.
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1. Introduction

Dynamic muscular fatigue is a physiological condition in which engaging in physical activity tem-
porarily lowers the maximum force or power output that can be generated by the participating
muscles (cao et al., 2018). Continuous and repeated muscle contractions during exercise or reha-
bilitation training can easily cause muscle fatigue and a rapid loss of muscle strength, which can
seriously cause muscle damage. A prompt adjustment of rehabilitation training modalities can
effectively stop muscle damage and prevent secondary injury. Therefore, accurate measurement
of the level of muscle tiredness is crucial in the fields of neuromuscular research and rehabilitation
medicine.

In recent years, there has been a lot of interest (Zhang et al., 2021a) in a method for measuring
muscle fatigue that combines the surface electromyography (sEMG) signal denoising technology
with the artificial intelligence. However, muscle fatigue estimation using sEMG frequently heav-
ily relies on preprocessing techniques like signal filtering, noise reduction, and feature extraction
because of the highly nonstationary, nonlinear, and complex nature of sEMG signals caused by
irregular muscle contractions during the exercise (Na and Kim, 2016). Both time-domain and
frequency-domain analysis approaches are now employed to extract features (Liu etal, 2021a,b;
Boyer et al., 2021). There are restrictions when analyzing complicated transient nonlinear dy-
namic characteristics in sEMG signals since this method of linear analysis makes the assumption
that sEMG signals are smooth.

Because of this, some researchers have created a technique for examining nonlinear dynamical
properties of sEMG signals that revolves around self-similarity, inhomogeneity, complexity, and
other nonlinear dynamic properties of sEMG signals (Xiong et al., 2013). For instance, Katz’s
technique was applied in the literature (Xu et al., 2022; Biancardi et al., 2021; Beretta-Piccoli
et al., 2023) to extract the multiscale entropy, which has a fractal dimension of sEMG signals.
However, the complicated nonlinear dynamic development that takes place during dynamic
muscle exhaustion cannot be adequately described using a single fractal dimension. As a result,
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more research into changes in the local features of various levels of sEMG signals is necessary
using the multifractal technology.

A spectrum that depicts a subset and the appropriate fractal dimension is typically used to
define multifractals (Wang and Zhou, 2000). The major algorithms are multifractal detrended
fluctuation analysis (MFDFA) (Kantelhaedt et al., 20o2) and a multifractal detrended moving
average (MFDMA) (Gu and Zhou, 2010). The program using the MFDMA technique is faster
than that using the MFDFA method when there are fewer data points in a one-dimensional
signal sequence, the computational cost is smaller, and the algorithm performs better (Xi et al.,
2015). Several researchers, including França, have examined the nonlinear properties of ECG
and EEG signals based on multiple fractals. Electroencephalography (EEG) and simulated data
were used by Françaet al. (2018) to examine the sensitivity of monofractal and multifractal
approaches to signal variance. In order to quantitatively compare the complexity of rhythm
sequences in healthy and congestive heart failure, Li (2020) and Mahananto et al. (2019) used
the MFDFA method to extract multiple fractal features. Mahananto et al. (2019) also used the
MFDFA method to find out how well heart rate variability parameters could predict a short-
-term prognosis in sepsis patients. However, research on the use of various fractal approaches to
characterize dynamic muscle exhaustion is scarce.

Regarding muscle fatigue recognition models, Zhang et al. (2021b) proposed a dual-sensor
fusion of sEMG signals and A-type ultrasound and investigated the efficacy of the dual-sensor
mode for static muscle fatigue detection. Liu et al. (2021a) conducted a study on static mus-
cle fatigue recognition using a combination of kernel principle component analysis (KPCA) and
support vector machines (SVM). Using high-resolution time-frequency approaches, Karthick and
Ramakrishnan (2016) suggested a method for analyzing muscular tiredness by comparing classifi-
cation abilities of simple Bayesian, SVM, and random forest classifiers. Long short-term memory
networks (LSTM) and enhanced threshold wavelet denoising were used in Wang et al. (2022)
who suggested a muscular fatigue identification model, and the findings showed that the denois-
ing helped one to increase recognition rates. In 1997, Hochreiter and Schmidhuber introduced
the concept of gated units in standard Recurrent Neural Networks (RNNs), addressing the issue
of gradient vanishing that was present in standard RNNs (Hochreiter and Schmidhuber, 1997).
Due to the design of LSTM, which allows the network to selectively retain or forget information,
it has achieved a significant success in tasks involving long-term dependency (Skrobek et al.,
2022). LSTM methods are widely used in various applications, including energy and medicine
(Skrobek et al., 2020). In conclusion, the problem of low accuracy of muscle fatigue recognition
models that utilize the time and frequency domain features results from the difficulty of describ-
ing the nonlinear and complex characteristics of sEMG signals in detail and comprehensively
using the time and frequency domain analysis techniques based on the assumption of a linear
muscle system.

This work intends to introduce a nonlinear signals analysis technique and conduct research
on the nonlinear feature analysis and extraction method of sEMG signals in light of the afore-
mentioned issues. An accurate evaluation of muscle fatigue in physical training, rehabilitation
medicine, and other domains is made possible by a novel approach and research idea based on
merging of multifractal data and conventional features.

2. Acquisition and pre-processing of the sEMG signal

2.1. Acquisition equipment and subjects

A wearable wireless sEMG signal collection device from OT Bioeletronica s.n.c., Italy, was
used in this investigation to collect sEMG signals. This device can simultaneously collect sEMG
signals from 14 muscles at a sample frequency of 2048Hz. Ten subjects were chosen for the
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examination. Ten young male participants were recruited, with an age range of 23 ± 2 years,
height of 171 ± 10 cm, and weight of 60 ± 8 kg. To ensure the scientific rigor of the experiment,
necessary health information was provided to the participants prior to the experiment, including
guidance, training, and risk warnings. The participants were instructed to rest adequately and
refrain from vigorous exercise in the 24 hours leading up to the experiment. Myoelectric data
gear included an AMD Ryzen 7 4800H 2.90GHz CPU, 16GB of memory, and the MATLAB
R2022b software for doing numerical calculations.

2.2. Signal collecting technique

The vastus medialis, vastus lateralis, and rectus femoris sEMG signals were recorded while
the patients were seated and performing reciprocal knee flexion and extension motions. A 3-kg
sandbag was linked to the subject’s ankle joint in order to hasten the development of muscular
exhaustion. The experimental scenario is schematically depicted in Fig, 1. The range of motion
of the knee joint was 5◦ to 80◦. After 20 minutes of rest, the experiment was restarted when
the individual felt subjectively exhausted or had significant leg muscular tremors. Data from
the minutes before the start and end of the measurement were utilized for the data analysis
of fatigue and non-fatigue comparison groups. A maximum of five sets of data were collected
per individual each day. Additionally, before the experiment, sEMG signals were collected for
each subject’s muscle during maximal voluntary contraction (MVC) for normalization reasons
(Tomohiro et al., 2006).

Fig. 1. A diagram of the distribution of the muscles and experimental scenarios

2.3. Data preprocessing

The effective signal range of sEMG signals is 0Hz to 500Hz, and the main energy concen-
tration occurs between 20Hz and 350Hz. A 50Hz trap is used to remove industrial frequency
interference from the collected data before a fourth-order Butterworth band-pass filter is used
to filter the data between 20Hz and 350Hz. Empirical mode decomposition (EMD) (Ye et al.,
2023) is also used to reduce the impact of baseline drift on the signal. In order to decrease
computational redundancy and maintain motor physiological information, which is useful for
further feature extraction and analysis, the envelope thresholding (Chen et al., 2023) approach
was employed to determine the active segments that indicate the aim of human action execution.
Figure 2 illustrates the continuous sEMG signals of a particular subject’s rectus femoris muscle
throughout the transition from non-fatigue to fatigue states, along with their corresponding en-
velopes and segmented activity segments. In this study, the first activity segment is labeled as
the non-fatigue state, and the last activity segment is labeled as the fatigue state. This paper
sets the muscle state in the experimental dataset to 1 for rows corresponding to the feature data
extracted from the sEMG data based on muscle fatigue status, and sets the muscle state to 0
for other rows.
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Fig. 2. The continuous sEMG signals of a subject’s rectus femoris muscle throughout the transition from
non-fatigue to fatigue states, along with their corresponding envelopes and segmented activity segments

3. Extraction of multifractal features from sEMG signals

3.1. MFDMA method

One of the most popular techniques for estimating multifractal measures is the MFDMA
algorithm. The steps of computation are as follows:
Step 1: Create a new sequence from the specified time series x(t), t = 1, 2, . . . , N

y(t) =
N∑

t=1

x(t) t = 1, 2, . . . , N (3.1)

Step2: Calculate the moving average over a time window with a scale value of s

ỹ(t) =
1

s

⌈(s−1)(1−θ)⌉∑

k=⌊(s−1)θ⌋

y(t− k) (3.2)

The greatest non-negative integer less than or equal to x is represented by ⌊x⌋, while the
smallest non-negative integer larger than or equal to x is represented by ⌈x⌉, θ ∈ [0, 1] denotes
the location of the moving average. When θ = 0, the moving average function is defined as

ỹ(t) =
1

s

s−1∑

k=0

y(t− k) (3.3)

Step 3: Calculate the residual time series of the signal

e(i) = y(t)− ỹ(t) (3.4)

Take n data points from each interval segment by dividing the residual sequence e(i) into
Nn disjoint interval segments of equal size, namely: Nn = [(N − n+1)/n], 3 ¬ n ¬ (N +1)/11.
Step 4: Determine the value of the local root mean square

F (s) =

√√√√1
s

s∑

i=1

e2[(v − 1)s + i] v = 1, 2, 3, . . . , Nm (3.5)
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Step 5: Determine the global order q root mean square value. The wave function is defined as

Fq(s) =






(
1

2Nn

2Nn∑

v=1

[Fv(s)]
q

) 1
q

for q 6= 0

exp

(
1

2Nn

2Nn∑

v=1

ln[Fv(s)]

)
for q = 0

(3.6)

Step 6: By altering the scale s, the following techniques may be used to determine the power-law
connection between Fq(s) and the scale s

Fq(s) ∼ s
H(q) (3.7)

where H(q) stands for the Hurst index of the order q, and the multifractal mass exponent τ(q)
is characterized by

τ(q) = qH(q)−Df (3.8)

The surface EMG signal examined in this study is a one-dimensional time series signal, hence
Df = 1. Df is the topological dimension of the multifractal signal. The Legendre transformation
may be used to produce the multifractal spectrum f(α) and the singularity strength α(q), as
shown below

α(q) =
dτ(q)

dq
f(α) = qα(q)− τ(q) (3.9)

The span of the multifractal singularity intensity function may be used to determine the strength
of multifractality (SOM)

SOM = αmax − αmin (3.10)

Hmax and Hmin differ in terms of the degree of multifractality (DOM)

DOM = Hmax −Hmin (3.11)

The subsequent nonlinear characterization also attempted to incorporate two nonlinear indi-
cators, the difference of the multifractal spectrum and the peak singularity index, in order to
more thoroughly define the muscular fatigue condition (Ye et al., 2023; Marri and Swaminathan,
2016). The multifractal spectrum difference (DFS) can be represented as

DFS = |f(αmax)− f(αmin)| (3.12)

The PSE, or peak singularity exponents, can be written as

PSE = α(q = −5) (3.13)

3.2. Non-fatigue and fatigue comparison group multifractal feature extraction study

This Section employs the aforementioned multifractal algorithm for feature extraction of the
labeled segments and a statistical approach to investigate the differences in multifractal features
between non-fatigued and fatigued controls in order to examine the changes in multifractal
properties of the surface EMG signals during muscle fatigue. The initial and last active segments
of the signal, which were labeled as non-tired and fatigued phases, respectively, should be noted.
Figures 3a and 3b, which were generated using equations (3.7) and (3.9)1, respectively,

display the Hurst index and multiple fractal spectra, where the multifractal features of the
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fatigue state and non-fatigue state are represented by the red and blue curves, respectively.
Figure 3 demonstrates that the multifractal breadth of the spectrum is about SOM. For non-
-exhausted and fatigued muscles, respectively, the peak singularity index PSE is roughly 0.405
and 0.727. The difference in change of the Hurst curve DOM is approximately 0.402 and 0.621,
and the measure DFS difference is approximately 0.082 and 0.421. According to the aforemen-
tioned findings, the SOM, DOM, DFS and PSE widths of the multifractal spectra were wider
during fatigue than when they were during non-fatigue. The multifractal spectra are symmet-
rical along the approximate axis in the non-fatigued condition, but with muscular fatigue, this
symmetry tendency is greatly diminished. The motor unit discharge rate fluctuates more during
dynamic contraction of the muscle as tiredness rises, leading to an increase in the DOM feature
parameter, which is one of the factors affecting the change in features. A higher level of multi-
fractality and enhanced chaos are also caused by the increased recruitment of motor units and
the intricacy of their spatio-temporal nonlinear connection with muscle exhaustion.

Fig. 3. Extraction of multifractal features from the comparison group of subjects with and without
muscle fatigue

The scatter plots for the four multiple fractal characteristics of SOM, DOM, DFS and PSE
are shown in Figs. 4a,b,c and 4d, respectively. The SOM, DOM and PSE features that correspond
to Figs. 4a,b and 4d have clear feature distinctions between the non-fatigue and fatigue states,
and the feature overlap rate of the two states is low, whereas the DFS features that correspond to
Fig. 4c have a greater overlap, and the distinction is less clear. This can be seen more intuitively.
The difference between the aforementioned mean values of the properties of the myoelectric

signals of 10 subjects under the fatigue and non-fatigue scenarios was observed using the t-test
method in order to further determine whether the SOM, DOM, DFS and PSE extracted by
the MFDMA algorithm have statistically significant differences under such scenarios. Table 1
displays the mean of each feature and P -value in the control condition. According to the findings,
the three characteristics (SOM, DOM and PSE) that were derived from the multiple fractal
spectrum using the MFDMA method were statistically significant (P -value 0.01) in determining
whether or not the muscles were exhausted. Comparatively, the difference in DFS variability is
relatively small. The findings could offer a fresh feature reference for deep learning and machine
learning models that recognize muscle exhaustion.

Table 1. Statistical variations of attributes in the comparative groups

Features
Non-fatigue Fatigue

P-value
mean mean

SOM 0.9034 1.2414 0.0000

DOM 0.5343 0.8741 0.0000

DFS −0.4172 −0.4960 0.0647

PSE 0.3393 0.5714 0.0000
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Fig. 4. Comparison of the fatigue group with the non-fatigue group using multifractal features

4. Model for recognizing muscle tiredness

Long Short Term Memory (LSTM) is a widely used recurrent neural network that effectively
alleviates the problems of gradient disappearance, gradient explosion, and long-term dependence
in sequence data by adding cell states and updating them through forgetting gates and memory
gates (Ghislieri et al., 2021). LSTM units consist of input gates, output gates, and forgetting
gates. The LSTM model was used to build a muscle fatigue recognition model in dynamic muscle
contraction based on the multiple fractal features of sEMG signals extracted in the preceding
section; its structure and hyperparameter settings are shown in Table 2, and its workflow is
shown in Fig. 5. First, a feature vector is created by extracting the multiple fractal feature
data from the pre-processed data using the sliding time window method. Next, the experimental
feature dataset is combined to produce a total of 14,400 items, 80% of which are used for the
training set, and the rest 20% are used for the test set. Finally, a stochastic gradient descent
algorithm is used to optimize learning.

Table 2. Configuration of LSTM parameters

Hyperparameter Value

Number of layers 3

LSTM unit 120

Optimizer Adam

Loss function RTRL

Activation function Relu

Batch size 100

Initial learning rate 0.001
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Fig. 5. LSTM model for identifying muscle fatigue

5. Experimental results of muscle fatigue recognition

5.1. The LSTM model performance for recognition using a single feature

The identification accuracy of the LSTM model was examined for each individual feature
of SOM, DOM, PSE, root mean square (RMS), median frequency (MF), and fractal dimension
(FD) (Xu et al., 2022) in order to investigate the performance of each feature in describing muscle
tiredness. The accuracy of model recognition is shown for each feature test set, as depicted in
Fig. 6. The red line within the box in the image indicates the median of the experimental findings,

Fig. 6. Feature recognition accuracy for various characteristics

and the top and lower bounds of the box in the figure reflect the upper and lower quartiles of the
10 times recognition accuracy. In terms of the recognition accuracy, the single fractal dimension
feature FD has the worst performance in the fatigue recognition model. The reason can be
considered that the single fractal dimension is not sufficient to portray subtle changes of the
motor unit recruitment. The highest recognition accuracy of the frequency domain feature MF
and the time domain feature RMS reach 94.32% and 93.82%, respectively, but the main range of
recognition accuracy of both is concentrated in 90.24% to 92.56% and 90.89% to 92.91%, with
a relatively scattered distribution and low stability. The reasons for this can be considered as a
large number of different types of motor units with an irregular discharge order and discharge
frequency during dynamic muscle contraction due to fatigue, resulting in the time domain and
frequency domain features of sEMG not changing significantly. The highest recognition accuracy
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of multifractal features SOM, DOM and PSE are 93.23%, 93.92% and 92.67%, respectively,
and the recognition accuracy of SOM performs the best. The highest recognition accuracy of
SOM is slightly lower than that of MF and RMS, but the main range of recognition accuracy
is concentrated in 91.61% 92.57%, and the distribution is more concentrated compared with
MF and RMS. In addition, the main ranges of recognition accuracy of DOM and PSE are
concentrated in 89.92% 91.03% and 91.04% 92.67%, with a more concentrated distribution
and higher reliability. The results demonstrate that the MFDMA feature extraction method
can characterize the nonlinear dynamics of EMG signals during dynamic muscle contraction.
These multifractal features vary slightly with a change in the collected local motion units, so
the recognition accuracy distribution is stable. This establishes a theoretical foundation for the
feature fusion of the following fatigue recognition model.

5.2. Results of the LSTM model for different feature set combinations in recognizing

muscle fatigue

To further optimize the feature set and achieve a muscle fatigue recognition model with high
accuracy, the evaluation metrics of the LSTM model were investigated under different combi-
nations of feature sets. The confusion matrix was utilized to calculate the accuracy, precision,
recall, and F1 score of the LSTM model for different feature set combinations. Each metric pa-
rameter was calculated 10 times, and the average was taken as the final reference result. The
features, combinations, and their evaluation metric parameters are presented in Table 3. The
findings demonstrate that: 1) combining feature sets generally enhances muscle fatigue recog-
nition performance compared to using single features; 2) the recognition accuracy rises as the
number of features increases; and 3) combining multifractal features on conventional EMG time-
and frequency-domain features can achieve 98.91% recognition accuracy, which is an increase
by 4.73% over conventional feature combinations. This outcome shows how combining numer-
ous fractal characteristics with conventional time-frequency domain features can increase the
precision of muscle fatigue detection.

Table 3. The evaluation metric parameters for different combinations of feature sets

Feature combination Accuracy Precision Recall F1 score

RMS+MF 94.18 95.89 93.95 94.57

SOM+DOM 95.93 97.01 95.04 96.14

RMS+MF+SOM+DOM 97.84 98.93 96.88 98.06

RMS+MF+SOM+DOM+PSE 98.91 99.27 98.68 99.19

5.3. Recognition outcomes for various models using the ideal feature set

The recognition accuracy of the LSTM model was compared with that of K nearest neigh-
bors (KNN) (Zhang et al., 2018), support vector machines (SVM) (Burges, 1998), and back
propagation (BP) neural network (LeCun et al., 1989) under the ideal set of characteristics in
order to investigate the superiority of the models. SVM apply a non-linear transformation of
the kernel function to map the solution of a non-linear problem to a high-dimensional feature
space; KNN uses distance measurements between different feature values to classify; BP neural
networks consist of two processes: forward propagation and backward propagation of the error,
i.e., calculating the error output in the direction from the input to output while adjusting the
weights.

The numerical values of evaluation metric parameters for each model are shown in Table 4.
The accuracy of LSTM is as high as 98.91%, which is 3.02% higher than that of KNN, 2.08%
higher than that of BP neural network, and 1.89% higher than that of SVM, as can be seen
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from the figure. Since the sEMG signal features before and after a specific time segment in the
process of muscle fatigue are correlated, the LSTM network can deeply capture the important
details of the EMG features and preserve a specific time interval while forgetting some redundant
information, so the model has better accuracy in identifying muscle fatigue.

Table 4. The evaluation metric parameters for several categorization models

Recognition
Accuracy Precision Recall F1 score

models

LSTM 98.91% 99.27% 98.68% 99.19%

BP 96.83% 94.97% 93.63% 94.26%

KNN 95.89% 93.84% 92.42% 93.09%

SVM 97.02% 92.62% 94.55% 93.95%

The experimental results confirm that our idea of using multifractal analysis to improve the
recognition rate of muscle fatigue is effective. To begin with, unlike static contraction, the dis-
charge sequence and frequency of a large number of different types of motor units are irregular
when the muscle is dynamically contracted to fatigue, which has a high degree of non-stationarity,
nonlinearity, complexity, and is a typical multifractal system. The complicated nonlinear dy-
namic evolution process formed during dynamic muscle exhaustion is challenging to define using
the time-domain, frequency-domain, and single fractal analysis approaches. Contrarily, multi-
fractal analysis is used to analyze datasets. The technique entails distorting datasets extracted
from patterns to generate multifractal spectra that illustrate how scaling varies over the dataset.
According to the experimental results, the multifractal feature can characterize complex charac-
teristics of the muscle discharge rate, motor unit recruitment, and degree of nonlinear coupling
of motion of the unit in space-time, making it an effective method for analyzing muscle dynamic
fatigue.

6. Conclusion

• A muscle fatigue identification approach based on a combination of sEMG multifractal
technology and LSTM was presented in order to address the issue of inaccurate assess-
ment of muscle fatigue caused by complex properties of the sEMG signal, such as non-
stationarity, nonlinearity and self-similarity.

• A new reference feature for the muscle fatigue recognition model based on deep learning
is provided by the introduction of the MFDMA method to analyze and extract nonlinear
properties of sEMG signals. Additionally, the t-test method is used to assess the signifi-
cance of differences between the multifractal characteristics under fatigue and non-fatigue
conditions.

• A methodology for recognizing muscle fatigue based on LSTM networks was created. The
recognition accuracy of the model was as high as 98.91% by fusing the combined feature set
of multifractals, which was 4.73% higher than that of the conventional EMG feature set.
In addition, the recognition accuracy of the LSTM network model was 2.08%, 3.02%, and
1.89% higher than that of BP neural networks, K-nearest neighbors, and SVM, respectively,
for the same feature set. The findings of the study might lead to the development of a
novel technique for precisely identifying muscle exhaustion during physical activity and
rehabilitation therapy.
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